National Voluntary Laboratory Accreditation Program # SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 Webber Gage Division / L.S. Starrett Co. 24500 Detroit Road Cleveland, OH 44145 Mr. Carl Stearns Phone: 440-835-0001 Fax: 440-892-9555 E-mail: webber@starrett.com ### **CALIBRATION LABORATORIES** ### **NVLAP LAB CODE 200038-0** NVLAP Code: 20/A01 ANSI/NCSL Z540-1-1994; Part 1 Compliant **DIMENSIONAL** NVLAP Code: 20/D01 Angular Range Best Uncertainty (±) note 1 Remarks Angle Gage Blocks up to 6 inches in length ± 0.5 arc seconds by comparison **Optical Cubes** up to 4 inches in length ± 0.5 arc seconds By comparison or closure method when possible. **Optical Polygons** up to 12 inches in diameter ± 1.0 arc seconds by comparison Regular polygons with 3, 4, 5, 6, 8, 10, 12, 15, 16, 18, 24, 36, or 72 sides. 2007-01-01 through 2007-12-31 Effective dates For the National Institute of Standards and Technology Page 1 of 3 # National Voluntary Laboratory Accreditation Program # **CALIBRATION LABORATORIES** # **NVLAP LAB CODE 200038-0** | <i>NVLAP Code</i> : 20/D03 | |----------------------------| |----------------------------| Gage Blocks | Best Uncertainty (±) notes 1, 2, 3 | Remarks | |--|--| | 1.35 µin ^{note 6} | Master Grade Calibration | | $0.0335~\mu\mathrm{m}^{note~6}$ | Master Grade Calibration | | $(0.65 + 0.7 \text{ L}) \mu in^{note 6}$ | Master Grade Calibration | | $(0.016 \pm 0.7 \text{ L}) \mu\text{m}^{\textit{note 6}}$ | Master Grade Calibration | | $(3.5 + 0.25 L) \mu in$ | Master Grade Calibration | | $(0.09 + 0.25 L) \mu m$ | Master Grade Calibration | | $(1.4 + 0.6 \text{ L}) \mu in^{note 4}$ | Commercial Grade Calibration | | · · · · · · · · · · · · · · · · · · · | Commercial Grade Calibration | | $(6.0 + 0.3 \text{ L}) \mu \text{in}$ | Commercial Grade Calibration | | $(0.15 + 0.3 \text{ L}) \mu\text{m}$ | Commercial Grade Calibration | | | | | 2.2 µin | Master Grade Calibration | | 0.055 μm | Master Grade Calibration | | $(1.6 + 0.6 L) \mu in$ | Master Grade Calibration | | $(0.04 + 0.06 L) \mu m$ | Master Grade Calibration | | $(6.0 + 0.35 \text{ L}) \mu \text{in}$ | Master Grade Calibration | | $(0.15 + 0.35 L) \mu m$ | Master Grade Calibration | | | 1.35 μ in ^{note 6} 0.0335 μ m ^{note 6} (0.65 + 0.7 L) μ in ^{note 6} (0.016 + 0.7 L) μ m ^{note 6} (3.5 + 0.25 L) μ in (0.09 + 0.25 L) μ m (1.4 + 0.6 L) μ in ^{note 4} (0.035 + 0.6 L) μ m ^{note 5} (6.0 + 0.3 L) μ in (0.15 + 0.3 L) μ m | NVLAP Code: 20/D05 Step Gages Calibration of Webber Style Step Gages | Range | Best Uncertainty (±) notes 1, 2, 3 | Remarks | |------------|------------------------------------|------------------| | to 85 in | $(10 + 2.0 L) \mu in$ | Commercial Grade | | to 2150 mm | (0.25 + 0.002 L) mm | Commercial Grade | 2007-01-01 through 2007-12-31 Effective dates For the National Institute of Standards and Technology Page 2 of 3 # National Voluntary Laboratory Accreditation Program # **CALIBRATION LABORATORIES** **NVLAP LAB CODE 200038-0** **NVLAP Code:** 20/D08 Optical Reference Planes RangeBest Uncertainty $(\pm)^{note 1}$ Remarksup to 6 inches in diameter $\pm 3 \mu in$ by comparison 2007-01-01 through 2007-12-31 Effective dates For the National Institute of Standards and Technology ^{1.} Represents an expanded uncertainty using a coverage factor, k = 2, at an approximate level of confidence of 95 %. ^{2.} Approximate value. Actual value determined by the test statistics. ^{3.} L is in inches or meters as appropriate. ^{4.} Uncertainty not less than 2.0 μin. ^{5.} Uncertainty not less than 0.05 μm. ^{6.} Best uncertainty is for gage blocks of chrome-carbide material. Best uncertainty for materials other than chrome-carbide may be approximately 40 % larger.